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pal Theory for Treating the Motion of 

and Warm Pronta in the Atmosphere 

by J. J. Stoker 

betIon 

most characteristic features of the motion 

pre in middle latitudes and also one which is 

of basic importance in determining the weather there is the 

motion of wavelike disturbances which propagate on a discon- 

tinuity surface between a thin wedge-shaped layer of cold 

air on the ground and an overlying layer of warmer air. In 

addition to a temperature discontinuity there is also in 

general a discontinuity in the tangential component of the 

wind velocity in the two layers. The study of such phenom- 

ena was initiated long ago by BJerknes and Solberg [2] 

and has been continued since by many others. In considering 

wave motions on discontinuity surfaces it was natural to be- 

gin by considering motions which depart so little from some 

constant steady motion (in which the discontinuity surface 

remains fixed in space) that linearisations can be per- 

formed, thus bringing the problems Into the realm of the 

classical linear mathematical physics. Such studies have 

led to valuable Insights, particularly with respect to the 

question of stability of wave motions in relation to the 

wave length of the perturbations.  (The problems being lin- 

ear, the motions in general can be built up as a combine— 

tion, roughly speaking, of simple sine or cosine waves and 

it is the wave length of such components that is meant here, 

cf. Haurwits [5], p. 234.) One conjecture is that the cy- 

clones of the middle latitudes--probably the most striking 

single meteorological phenomenon there--are Initiated because 

'Numbers in square brackets refer to the bibliography at 
the end of this report. 



Dynamical Theory for Treating the Motion of 

Cold and Warm Fronta in the Atmosphere 

by J. J. Stokar 

Sao. 1. Introduction 

One of the moat character!atic featurea of the motion 

of the atmoaphere In middle latitudes and also one which la 

of baaic importance in determining the weather there is the 

motion of wavelike dlaturbancea which propagate on a discon- 

tinuity surface between a thin wedge-shaped layer of cold 

air on the ground and an overlying layer of warmer air.  In 

addition to a temperature discontinuity there is also in 

general a discontinuity in the tangential component of the 

wind velocity in the two layers. The study of auch phonem- 
es) 

ena waa initiated long ago by Bjerknea and Solberg [2]y   ' 
and has been continued since by many others. In considering 

wave motions on discontinuity surfaces it waa natural to be- 

gin by considering motions which depart so little from some 

constant steady motion (in which the discontinuity surface 

remains fixed in apace) that linearizations can be per- 

formed* thus bringing the problems into the realm of the 

classical linear mathematical physics. Such studies have 

led to valuable insights* particularly with respect to the 

question of stability of wave motions in relation to the 

wave length of the perturbations.  (The problems being lin- 

ear , the moti<ms.. .in. general can be. built.. up.. aa.. a. .comb.inar 
tion, roughly apeaking, of simple sine or cosine waves and 

it la the wave length of auch components that la meant here, 

cf. Haurwitz [5], p. 234.) One conjecture la that the cy- 

clones of the middle latitudes--probably the most striking 

single meteorological phenomenon there—are initiated because 

U) 
'Numbers in square bracketa refer to the bibliography at 
the end of this report. 



of the occurrence of such unstable waves on a discontinuity 

surface. 

A glance at a weather map, or, still better, an exami- 

nation of weather maps over a period of a few days, shows 

clearly that the wave motions on the discontinuity surfaces 

(which manifest themselves as the so-called fronts on the 

ground) develop amplitudes so rapidly and of such a magni- 

tude that a description of the wave motions over a period 

of, say, a day by a linearization seems not feasible with 

any accuracy. The object of the present report Is to make a 

first step In the direction of a nonlinear theory, based on 

the exact hydrodynamlcal equations, for the description of 

these motions that can be attacked by numerical or other 

methods. The reason that no such treatment seems to have 

been made up to now Is not that meteorologists have failed 

to see the desirability of doing so, but rather that the 

difficulties to be overcome in obtaining even numerical so- 

lutions are really formidable. No claim Is made that the 

problem Is solved here In any general sense. What Is done 

Is to start with the general hydrodynamlcal equations and 

make a series of assumptions regarding the flow; In this way 

a sequence of three nonlinear problems (we call them Prob- 

lems I, II, III), each one furnishing a consistent and com- 

plete mathematical problem, Is formulated.  In this way one 

can see the effect of each additional assumption In simpli- 

fying the mathematical problem. The first two problems re- 

sult from a series of assumptions which would probably be 

generally accepted by meteorologists as reasonable, but un- 

fortunately even Problem II Is still unmanageable In terms 

of numerical analysis. Further, and more drastic, assump- 

tions lead to a still simpler Problem III which Is formu- 

lated In terms of three first order partial differential 

equations In three dependent and three Independent variables 

(as contrasted with eight differential equations In four In- 

dependent variables In Problem I). The three differential 

equations of Problem III are probably capable of yielding 



reasonably accurate approximations to the frontal motions 

under consideration, but they are still too difficult to 

deal with, even numerically, principally because they in- 
(*) 

volve three independent variables  —such equations are 

well known to be beyond the scope of even the most modern 

digital computing machines. Consequently, still further 

simplifying assumptions must be made in order to obtain a 

theory capable of yielding some concrete results through 

calculation. 

At this point, two different approaches to the problem 

have been devised. One of them, by Whitham (and which is 

discussed by him in this report), deals rather directly with 

the three differential equations of Problem III. Two of 

these equations are essentially the same as the classical 

gas dynamics equations in two Independent and two dependent 

variables if one regards the third independent variable as a 

parameter and makes one additional and rather reasonable as- 

sumption. These two equations—which refer to motions in 

vertical planes--can therefore be integrated. Afterwards 

the transverse component of the velocity is found by inte- 

grating a linear first order partial differential equation. 

In this way a quite reasonable qualitative description of 

the dynamics of frontal motions can be achieved which is in 

good agreement with many of the observed phenomena. How- 

ever, this theory has a disadvantage in that it does not 

t#\   
'The work of Freeman [3,4] is based on a theory which 
could be considered as a special case of Problem III in 
which the Corlolls terms are neglected and the motion is 
assumed at the outset to depend on only one space varia- 
ble and the time. The idea of deriving the theory re- 
sulting in Problem III occurred to the author while read- 
ing Freeman's paper, and, indeed, Freeman indicates the 
possibility of doing so. The guiding idea is to make use 
of the analogue of the long-wave shallow water theory for 
gravity waves, and this idea seems to have occurred to a 
number of meteorologists (in particular, see Abdullah 
[1]). However, the present paper seems to be the first 
in which essentially three-dimensional motions are stud- 
ied. 
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permit a complete numerical integration because of a pecu- 

liar difficulty at cold fronts.  (The difficulty sterna from 

the fact that a cold front corresponds in this theory to 

what amounts to the propagation of a shock into a vacuum—a 

mathematical impossibility.  If one had a means of taking 

care of turbulence and friction at the ground, it would per- 

haps be possible to overcome this difficulty.) Neverthe- 

less, the good qualitative agreement with the observed phe- 

nomena is an indication that the three differential equa- 

tions furnishing the basic approximate theory from which we 

start--i.e. those of our Problem III--have in them the pos- 

sibility of furnishing reasonable results. 

The author's method of treating the three basic differ- 

ential equations is quite different from that of Whltham, 

but it unfortunately involves a further assumption which has 

the effect of limiting the applicability of the theory. The 

guiding principle was that differential equations in only 

two independent variables should be obtained in order to 

make numerical computations feasible.  On the other hand, 

the number of dependent variables need not be so ruthlessly 

limited. Finally, it is highly desirable to obtain differ- 

ential equations of hyperbolic type in order that the method 

of characteristics can be employed as an aid in computing 

solutions. These objectives can be attained by making quite 

a few further simplifying assumptions with respect to the 

mechanics of the situation. The result is what might be 

called Problem IV. What remains of the original hydrodynam- 

ical equations is still complicated enough, however, to make 

one feel that if such a simplified theory falls to mirror 

the observed facts at least roughly, then the problem of 

calculating the unsteady motion of cold and warm fronts will 

present a formidable challenge to numerical analysis in the 

general field of nonlinear partial differential equations. 

The theory formulated in Problem IV is embodied in a system 

of four nonlinear first order partial differential equations 

of hyperbolic type in four dependent and two independent 

— -•' '- 



variables. A numerical integration of these equations is 

being oarried out (by finite differences applied to the 

equations in characteristic form), but the labor of inte- 

grating the equations is so great that only meagre results 

are so far available. 

In section 2 the sequence of approximate theories for- 

mulated as Problems I, II, III will be derived from the hy- 

drodynamical equations by adding successively more and more 

hypotheses of a physical character.  In section 3 the au- 

thor's method of treating Problem III—which should be re- 

garded as the basic problem--approximately will be derived. 

This yields Problem IV.  In section 4 the characteristic 

form of the differential equations of Problem IV will be ob- 

tained and conclusions drawn from them. This is followed by 

the report of 0. Whltham giving his method of treatment of 

the differential equations of the basic Problem III. The 

theory of 0. Whltham is in some ways more satisfactory than 

that of the author since it yields important qualitative re- 

sults of the kind actually observed, and does that, in addi- 

tion, without the necessity to make numerical calculations. 

However, it is unsuitable for describing the early stages of 

frontal motions, and this suggests that the method of the 

author might be used for the initial stages followed by the 

method of Whltham for the later stages of the motions. 

Sec. 2. Derivation of the basic approximate theory 

In the present section the details of the derivation of 

the basic approximate theory will be given, but it seems 

worth while to sketch out in general terms the underlying 

ideas and motivations first by way of orientation. 

To begin with, a certain steady motion (called a sta- 

tionary front) is taken as an initial state, and this con- 

sists of a uniform flow of two superimposed layers of cold 

and warm air, as indicated In Figure 1. The z-axis is taken 

positive upward and the x,y-plane is a tangent plane to the 

.1..U. 
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earth.  The rotation of the earth is to be taken into account 

Warm 
Ground 

Pig. 1 
A stationary front 

OC Cold 

but, for the sake of simplicity, not its sphericity--a com- 

mon practice in dynamic meteorology. The coordinate dystem 

is assumed to be rotating about the 2-axis with a constant 

angular velocity Cl  * GO sin p,  with CO the angular velocity 
of the earth and p the latitude of the origin of our coor- 

dinate system.  (The motivation for this is that the main 

effects one causa about are found so long as the Coriolis 

term is included, and that neglect of the curvature of the 

earth has no serious qualitative effect.) As indicated in 

Figure 1, the cold air lies in a "edge under the warm air 

and the discontinuity surface between the two layers is in- 

clined at angle OC to the horizontal. The term "front" is 

always applied to the intersection of the discontinuity sur- 

face with the ground, and in the present case we have there- 

fore as Initial state a stationary front running along the 

x-axls. The wind velocity in the two layers is parallel to 

the x-axls (otherwise the discontinuity surface could not be 

stationary), but it will in general be different in magnitude 

- --*c"~ 



and perhaps even opposite in direction in the two layers. 

The situation shown in Figure 1 is not uncommon. For in- 

stance, the x-axis might be in the eastward direction, the 

y-axis in the northward direction and the warm air would bo 

moving in the direction of the prevailing westerlies.  The 

origin of the cold air at the ground is, of course, the 

existence of the cold polar regions. We shall see later 

that such configurations are dynamically correct anJ that 

the angle QC is uniquely determined (and quite small, of the 

order of £°) once the state of the warm air and cold air is 

given.  (The discontinuity surface is not horizontal because 

of the Coriolis force arising from the rotation of the 

earth.) 

We proceed next to describe what is observed to happen 

in many cases once such a stationary front starts moving. 

In Figure 2 (see next page) a sequence of diagrammatic 

sketches is given which indicate in a general way what can 

happen. All of the sketches show the intersection of the 

moving discontinuity surface (cf. Figure 1) with the ground 

(the x,y-plane with the y-axis taken northward, the x-axis 

taken eastward). The shaded area indicates the region on 

the ground covered by cold air, while the unshaded region is 

covered at the ground by warm air.  Of course, the cold air 

always lies in a thin wedge under a thick layer of warm air. 

In Figure 2a the development of a bulge in the stationary 

fro 

vn 
front toward the north is indicated.    Such a bulge then 

What agency serves to initiate and to maintain such mo- 
tions appears to be a mystery. Naturally such an Impor- 
tant matter has been the subject of a great deal of dis- 
cussion and speculation, but there seems to be no consis- 
tent view about it among meteorologists.  In applying the 
theory derived here no attempt is made to settle this 
question: we simply take our dynamical model, assume an 
initial condition which in effect states that a bulge of 
the kind just described is initiated, and then study the 
subsequent motion by integrating the differential equa- 
tions subject to the appropriate initial conditions. How- 
ever, if the approximate theory is really valid, such 
studies might perhaps be used, or could be modified, in 
such a way as to throw some light on this important and 
vexing question. 
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Pig. 2 

Stages in the motion of a frontal disturbance 
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deepens and propagates eastward with a velocity of the order 

of 500 miles per day.  It now becomes possible to define the 

terms cold front and warm front. As indicated in Figure 2b, 

the cold front is that oart of the whole front at which cold 

air is taking the place of warm air at the ground, and the 

warm front is the portion of the whole front where cold air 

is retreating with warm air taking its place at the ground. 

Since such cold and warm fronts are accompanied by winds, 

and by precipitation in various fOi-ina--in fact, by ail of 

the ingredients that go to make up what one calls weathers- 

it follows that the weather at a given locality in the mid- 

dle latitudes is largely conditioned by the passage of such 

frontal disturbances. Cold fronts and warm fronts behave 

differently in many ways. For example, the cold front in 

general moves faster than the warm front and steepens rela- 

tive to it, so that an originally symmetrical disturbance or 

wavo gradually becomes distorted in the manner indicated in 

Figure 2c. This process sometimes--though by no means al- 

ways—continues until the greater portion of the cold front 

has overrun the warm front; an occluded front, as indicated 

in Figure 2d, is then said to occur. The prime object of 

what follows is to derive a theory—or perhaps better, to 

invent a simplified dynamical model—capable of dealing with 

fluid motions of this type that is not on the one hand so 

crude as to fail to yield at least roughly the observed mo- 

tions, and on the other hand is not impossibly difficult to 

use for the purpose of mathematical discussion and numerical 

calculation. 

We begin with the classical hydrodynamical equations. 

The equations of motion in the so-called Eulerian form are 

taken: 

' ft - - I* • PP(X, 

f*-1'       ^ ft - - I" • pp(y) 
p if * - "ff • P»U) - e« 

«HttB 
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with jjr (the particle derivative) defined by the operator 
rx a       a       a 

-r— + u -—— • v -t— + w -=— •  In these equations u, v, w 
dt dx dy    oz 
are the velocity components relative to our rotating coordi- 

nate system, p is the pressure, p the density, PF(X) «tc. 

the components of the Coriolis force due to the rotation of 

the coordinate system, and pg is the force of gravity (as* 

sumed to be constant). These equations hold in both the 

warm air and the cold air, but it is preferable to distin- 

guish the dependent quantities in the two different layers; 

this is done here throughout by writing uf, v', w1 for the 

velocity components in the warm air and similarly for the 

other dependent quantities. 

We now introduce an assumption which is commonly made 

in dynamic meteorology in discussing large-scale motions of 

the atmosphere, i.e. that the air is incompressible.  In 

spite of the fact that such an assumption rules out thermo- 

dynamic processes, it does seem rather reasonable since the 

pressure gradients which operate to create the flows of in- 

terest to us are quite small and, what is perhaps the deci- 

sive point, the propagation speed of the disturbances to be 

studied is very small compared with the speed of sound in 

air (i.e. with disturbances governed by compressibility ef- 

fects).  It would be possible to consider the atmosphere, 

though incompressible, to be of variable density. However, 

for the purpose of obtaining as simple a dynamical model as 

possible it seems reasonable to begin with an atmosphere 

having a constant density in each of the two layers. As a 

consequence of these assumptions, we have the.following-equa- 

tion of continuity: 

(2.2) u + v • w_ » 0. 

The equations (2.1) and (2.2) together with the conditions 

of continuity of the pressure and of the normal velocity 

components on the discontinuity surface, the condition w * 0 
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at the ground, appropriate Initial conditions, etc. doubt- 

lessly yield a mathematical problem--call It Problem I—the 

solution of which would furnish reasonably good approxima- 

tions to the observed phenomena.  Unfortunately, such a 

problem Is still so difficult as to be far beyond the scope 

of known methods of analysis--including analysis by numeri- 

cal computation. Thus still further simplifications are in 

order. 

Ona of the best-founded empirical laws in dynamic mete- 

orology is the hydrostatic pressure law, which states that 

the pressure at any point in the atmosphere is very closely 

equal to the static weight of the column of air vertically 

above it. This is equivalent to saying that tne accelera- 

tion terms in the third equation of (2.1) can be ignored, 

with the result 

(2.3) -—£ a -pg. 
OZ 

This is also the basis of the so-called long-wave or shallow 

water theory of surface gravity waves, and the author was 

guided in much that follows by experience gained (cf. [6]) 

in working with such gravity wave problems. Since the ver- 

tical component of the acceleration of the particles is ig- 

nored, it follows on purely klnematlcal grounds that the 

horizontal components of the velocity will be Independent of 

the vertical coordinate z for all time if that was the case 

at the Initial Instant t * 0. Since we do in fact assume an 

initial motion with such a property, it follows that we have 

(2.4)     u * u(x,y,t),  v » v(x,y,t),  w =» 0. 

The first two of the equations of motion (2.1) and the equa- 

tion of continuity (2.2) therefore reduce to 
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ut + uux + vuy 3 * p Px + P(x) 

(2.5)        ( vt + uvx *Wy-iPy + P(y) | 

u • v » 0, 
x  y 

where we use subscripts to denote partial derivatives and 
subscripts enclosed in parentheses to indicate components of 
a vector. The Oorlolls acceleration terms are now given by 

/ x = 2 CO sin fip'V =» Ay 
(2.6) " 

'/ » = -2 CO sin <p»M  • -Au 

when use is again made of the fact that w * 0.  (The lati- 

tude angle <p,  as was indicated earlier, is assumed to be 
constant.) We observe once more that all of these relations 

hold in both the warm and cold layers, and we distinguish 
between the two when necessary by a prime on the symbols for 
quantities in the warm air. It Is perhaps also worth men- 

tioning that the equations (2.5) with F/_) and P/ » defined 
by (2.6) are valid for all orientations of the x,y-axes; 
thus it Is not necessary to assume (as we did above, for ex- 
ample) that the original stationary front runs in the east- 
west direction. 

We have not so far made full use of the hydrostatic 

pressure law (2.5). To this end It is useful to introduce 
the vertical height h * h(x,y,t) of the discontinuity sur- 
face 'between the warm and cold layers and the height 
h* * h'(x,y,t) of the warm layer itself (see Pigure 3). As- 

suming that the pressure p' Is zero at the top of the warm 
layer we find by integrating (2.3): 

(2.7) Pf(x,y,s,t) » p'g(hf - z) 

for the pressure at any point in the warm air.  In the cold 

*m 
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Pig. 3 
Vertical height of the two layers 

air we have, In similar fashion: 

(2.8) p(x,y,e,t) * p'g(h' - h) • J0g(h - z) 

when the condition of continuity of pressure, p' * p for 

z = h, Is used.  (The formula (2.8) Is the starting point of 

the paper by Freeman [3] which was mentioned In the Intro- 

duction.) Insertion of (2.8) In (2.5) and of (2.7) In (2.5)* 

yields the following six equations for the six quantities 

u, v, h, u', v', h': 

^ • uux • vuy » -g[jp hx • (1 - f^)hx] *Xv 

(2.9) 
(ccld air) vt • UTX * wy = -g[|l hy • (1 - £l)hy) - Au 

^ • v » 0 

u*mm 
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'ut * u'ux * v'uy = '&% *  Av' 

(warrr, air)    \ vt * u vx * v vy " 'gny 
(2.10)        )_. + u.y^ «, y. . , .gh^ . Au. 

"x • v = 0. 
y 

These equations together with the kinematic conditions ap- 
propriate at the surfaces z * h and z = hf, and Initial con- 

ditions at t = 0 would again constitute a reasonable mathe- 
matical problem—call It Problem II—which could be used to 

study the dynamics of frontal motions. The problem II is 
much simpler than the problem I formulated above in that the 
number of dependent quantities is reduced from eight to six 
and, probably still more important, the number of indepen- 
dent variables is reduced from four to three. These simpli- 

fications, it should be noted, come about solely as a conse- 
quence of assuming the hydrostatic pressure law, and since 

meteorologists have much evidence supporting the validity of 
such an assumption, the problem II should then furnish a 

reasonable basis for discussing the problem of frontal mo- 
tions. Unfortunately, Problem II Is just about as inaccessi- 

ble as Problem I from the point of view of mathematical and 
numerical analysis. Consequently, we make still further hy- 
potheses leading to a simpler theory. 

As a preliminary to the formulation of Problem III we 
write down the kinematic free surface conditions at i = h 

and z « h' (the dynamical free surface conditions, p = 0 at 
z = h' and p = p' at z =» h, have already been used). These 

conditions state simply that the particle derivatives of the 
functions z - h(x,y,t) and z - h'(x,y,t) vanish, since any 

particle on the surface z - h » 0 or the surface z - h' =0 
remains on it. We have therefore the conditions 

M 
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uh • vhw *L »0 x     y   t 

(2.11) ( u'h • v'h • h. * 0 x    y   z 

u'hx * "'K  * ht * °' 

in view of the fact that w vanishes everywhere.  It is con- 

venient to replace the third equations (the continuity equa- 

tions) in the sets (2.9) and (2.10) by 

(2.12) (uh)x • (vh)  • ht * 0,   and 

(2.13) [u»(h' - h)]x • [v
f(h' - h)]y *• (h» - h)t * 0, 

which are readily seen to hold because of (2.11).  In fact, 

the last two equations simply state the continuity condi- 

tions for a vertical column of air extending (in the cold 

air) from the ground up to t  * h, and (in the warm air) from 

t * h to s a h*. 

We now make the really trenchant assumption, i.e. that 

the motion of the warm air layer is not affected by the mo- 

tion of the cold air layer. This assumption has a rather 

reasonable physical basis, as might be argued in the follow- 

ing way:  Imagine the stationary front to have developed a 

bulge in the y-direction, say, as in Figure 4a (see next 

page). The warm air can adjust itself to the new condition 

simply through a slight change in its vertical component, 

without any need for a change in u' and v', the horizontal 

components. This is indicated in Figure 4b, which is a ver- 

tical section of the air taken along the line AB in Figure 

4a; in this figure the cold layer is shown with a quite 

small height--whlch in whac one always assumes. Since we 

ignore changes in the vertical Telocity components in any 

case, it thus seems reasonable to make our assumption of un- 

altered flow conditions in the warm air. However, in the 

cold air one sees readily--as Indicated in Figure 4c—that 



16 

-. B 

*» x 

^55^; 
(b) 

Cold air 

> x 



17 

quite large changes In the components u, v of the velocity 
In the cold air may be needed when a frontal disturbance Is 
created. Thus we asaume from now on that u', v', h! have 
for all time the known values they had In the Initial steady 
state in which v1 =* 0, u' * const. The differential equa- 
tions for our Problem III can now be written as follows: 

ut + uu^ • vu • -gt|p hx • (1 - £-)\)  • Av 

(2.14)      1 vt • uvx • wy » -g[£. hy •  (1  - jr)hy]   - Au 

(uh)x •  (vh)y • ht - 0, 

in which h' and hi are the known functions given in terms of 
the initial state in the warm air. The initial state, In 
which v' a v = 0, u » const., uf * const., must satisfy the 
equations (2.9) and (2.10); this leads at once to the condi- 
tions 

hx » 0 
w»     A  i ,      ,   A*"!"1' (2.16)  < 

for the slopes of the free surfaces initially. The slope h 
of the discontinuity surface between the two layers is 
nearly proportional to the velocity difference u' - u since 
p'/P differs only slightly from unity, and it is quite small 
because of the factor A, which is a fraction of the angular 
velocity of the earth. The differential equations for Prob- 
lem III can, finally, be expressed in the form: 

ut * uux + **+  + S*1 " p~*hx * Av 

ht + (uh^x * *vh)y * °» 

i^^^Mn^^^^M^^^M^^^^^B 
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by using the formulas for hi and h' given in (2.15). We 

note that the influence of the warm air expresses itself 

through its density p' and its velocity u' . The three equa- 

tions (2.16) presumably have uniquely determined solutions 

once the values of u, v, and h are gi/en at the initial in- 

stant t • 0, and such solutions might reasonably be expected 

to furnish an approximate description of the dynamics of 
(*) 

frontal motions.    Unfortunately, these equations are 

still quite complicated, and they cannot be integrated nu- 

merically even with the aid of the most modern high-speed 

digital computers--mostly because there are three indepen- 

dent variables. 

Consequently, one casts about for still other possibil- 

ities, either of specialization or simplification, which 

might yield a manageable theory. One possibility of spe- 

cialization has already been mentioned:  if one assumes no 

Corlolis force and also assumes that the motion is indepen- 

dent of the y-coordinate, one obtains the pair of equations 

{ ut + uux + g(1 " P~)hx = ° 
(2.17)        j 

( ht • (uh)x = 0 

which are identical with the equations of the one-dimensional 

shallow water gravity wave theory. These equations contain 

in them the possibility of the development of discontinuous 

solutions--called bores--and this fact lies at the basis of 

the discussions by Freeman [3,4] and Abdullah [1] .  In such 

one-dimensional treatments, it is clear that it is in prin- 

ciple not possible to deal with the bulges on fronts and 

their deformation In time and space, since such problems de- 

pend essentially on both space variables x and y. Another 

_  

These equations are in fact quite similar to the equa- 
tions for two-dimensional unsteady motion of a compressi- 
ble fluid with h playing the role of the density of the 
fluid. 

. 

• 
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possibility would be a linearization of the differential 

equations (2.16) based on assuming small perturbations of 

the frontal surface and of the velocities from the initial 

uniform state.  This procedure might be of some interest, 

since such a formulation would take care of the boundary 

condition at the ground, while the existing linear treat- 

ments of this problem do not. However, our Interest here is 

In a nonlinear treatment which permits of large displace- 

ments of the fronts.  One such possibility, to be discussed 

in the report by 0. Whithara, involves essentially the inte- 

gration of the first and third equations for u and h as 

functions of x and t, regarding y as a parameter and deriva- 

tives with respect to y as negligible and assuming initial 

values for v; this is feasible by the method of characteris- 

tics. Afterwards, v is determined by integrating the second 

equation considering u and h as known, and this can be done 

because the equation is a linear first order equation under 

these conditions. As stated earlier, this procedure fur- 

nishes good qualitative results, but it cannot be carried 

out in all detail numerically because of the fact that at a 

cold front one has, in effect, a bore propagating into a re- 

gion containing no fluid and such a situation cannot be 

easily handled.  In the following section a different ap- 

proach to the problem of approximating the solution of the 

equations (2.16) is proposed which can be carried out numer- 

ically, but it has the disadvantage that still more physical 

assumptions are made and consequently the variety of motions 

that can be approximated is still further restricted. 

Sec. 3. Problem IV: An approximate treatment 
of the basic problem III 

The formulation of Problem IV was motivated by the fol- 

lowing considerations.  If one looks at a sequence of weather 

maps and thinks of the wave motion in our thin wedge of cold 

air, the resemblance to the motion of waves in water which 

deform into breakers (especially in the case of waves which 

ea 
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develop into occluded fronts) Is very strong. The great 

difference Is that the wave motion in water takes place in 

the vertical plane while the wave motion in air takes place 

essentially in the horizontal plane. When the hydrostatic 

pressure assumption is made in the case of water waves the 

result is a theory in exact analogy to gas dynamics, and 

thus wave motions with an appropriate "sound speed" become 

possible even though the fluid is Incompressible—the free 

surface permits the introduction of the depth of the water 

as a dependent quantity, this quantity plays the role of the 

density in gas dynamics, and thus a dynamical model in the 

form of a compressible fluid is obtained. Such problems 

have been much studied, and a good deal can be said about 

them, principally because the differential equations are 

hyperbolic and have only two independent variables.  It 

would seem therefore reasonabl' to try to invent a similar 

theory for frontal motions in the form of a long-wave theory 

suitable for waves which move essentially in the horizontal, 

rather than the vertical, plane, and in which the waves 

propagate essentially parallel to the edge of the original 

stationary front, i.e. the x-axis.  In this way one might 

hope to be rid of the dependence on the variable y at right 

angles to the stationary front, thus reducing the indepen- 

dent variables to two, x and t; and if one still could ob- 

tain a hyperbolic system of differential equations then nu- 

merical treatments by finite differences would be feasible. 

This program can, in fact, be carried out in such a way as 

to yield a system of four first order nonlinear differential 

equations'in two Independent and four dependent variables 

which are hyperbolic. 

Once having decided to obtain a long-wave theory for 

the horizontal plane, the procedure to be followed can be 

Inferred to a large extent from what one does in developing 

the same type of theory for gravity waves in water (cf. [6]). 

To begin with it seems clear that the displacement v9(x,t) 

of the front itself in the y-direction should be introduced 

Bfe> 
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as one of the dependent quantities—all the more since this 

quantity is anyway the most obvious one on the weather maps 

To have such a "shallow water" theory in the horizontal 

plane requires—unfortunately—a rigid "bottom" somewhere 

(which is, of course, vertical in this case), and this we 

simply postulate, i.e. we assume that the y-coraponent v of 

the velocity vanishes fior all time on a vertical plane 

y ~  6 * const, parallel to the stationary front along the 
x-axis (see Figure 5). The velocity v(x,y,t) is then 

Pig. 5 

(«) assumed to vary linearly   in y, and its value at the front, 

T*7 The analogous statement holds also in the long-wave theory 
in water in its simplest form. 
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y » v?(x,t),is called v(x,t). The intersection of the dis- 

continuity surface z  » h(x,y,t) with the plane y * 5 is a 

curve given by z  * h(x,t), and we assume that the discontin- 
uity surface is a ruled surface having straight line genera- 

tors running from the front, y » vtf(x,t), to the curve 

z  » h(x,t), and parallel to the y,z-plane. Finally, we as- 

sume that u, the x-component of the velocity, depends on x 

and t only:* ' u * u(x,t 

is to yield the relations 

and t only:  ' u * u(x,t). The effect of these assumptions 

(3.1) h(x,y,t) * | " YiX'*l • h(x,t), 
8  - yt (x,t) 

c 
(3.2) v(x,y,t) » -r—° ~ y „» • v(x,t), 

8 - v? (x,t) 

as one readily sees.  In addition, we assume that a particle 

that is once on the front y - W(x,t) =0 always remains on 

it, so that the relation: 

(3.3) v(x,t) * V[t *  uV^x 

must hold. The four quantities u(x,t), \f7(x,t),  h(x,t), and 

v(x,t) are our new dependent variables. Differential equa- 

tions for them will be obtained by integrating the basic 

equations (2.16) of Problem III with respect to y from y * >7 

to y =» 6 --which can be done since the dependence of u, v, 

and h on y is now explicitly given—and these three equa- 

tions together with (3.3) will yield the four equations we 

want. 

before writing these equations down it should be said 

that the most trenchant assumption is that concerning the 

existence of the rigid boundary y » S . One might think 

that as long as the velocity component v dies out with suffi- 

cient rapidity in the y-direction such an assumption would 

7*7 

: ; 
I I 

I 

The analogous statement holds also in the long-wave theory 
in water in its simplest form. 
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yield a good approximation, but the facts in the ease of 

water waves indioate this to be not sufficient for the accu- 

racy of the approximation: with water waves in very deep 

water the vertical velocity (corresponding to our v here) 

dies cut very rapidly in the depth, but it is nevertheless 

essential for a good approximation to assume that the ratio 

of the depth down to a rigid bottom to the wave length is 

small. However, suoh a rigid vertical barrier to the winds 

does exist in some cases of interest to us in the form of 

mountain ranges, which are often much higher than the top of 

the cold surface layer (i.e. higher than the curve z * h(x,t) 

in Figure 5).  In any case, severe though this restriction 

is, it still seems to the author to be worth while to study 

the motions which are compatible with it since something 

about the dynamics of frontal motions with large deforma- 

tions may be learned in the process.  In particular, one 

might learn something about the kind of perturbations that 

are necessary to initiate motions of the type observed, and 

under what circumstances the motions can be maintained. 

Another objection to such a theory could well be raised. 

At the very outset we assumed an incompressible fluid, thus 

ruling out at once all thermodynamical processes. This 

means that we consider the mechanical sources of energy to 

be the essential ones In the large-scale motions under 

study. Such a view has been advocated by Abdullah [l], who 

supports it by calculations showing that the over-all me- 

chanical sources of energy are of the right order of magni- 

tude to account for the energy in cyclones.  In the end, of 

course, any mathematical theory which pretends to apply to 

frontal disturbances in the atmosphere can be Justified only 

by its consequences in relation to the observed facts. 

In carrying out the derivation of the differential 

equations of our theory according to the plan outlined 

above, we calculate first a number of Integrals. The first 

of these arise from (3.1) and (3.2): 
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8 6 

/ v dy . g I        J   (8 - y) dy -\ v( 6 - *}). 

From these we derive by differentiations with respect to x 
and t another set of relations: 

7 

J" »t dy -| »t(S - iy) *\  vv/t, 

/ Bt dy » 1^(5 - y) -£hv?t. 

(In deriving these relations, It Is necessary to observe 
that the lower limit W Is a function of x and t.)  One ad- 
ditional relation Is needed, as follows: 

/ (hu^dy-^-juy hdy( 

7 
|(hxu + fiux)( 5 - Vf )  - | huv^. 
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We now integrate both sides of the equations (2.16) 

with respect tc 7 from ^ to 8, make us* o: the above Inte- 

grals, note thac u * u(x,t) is Independent of 7, and divide 

b7 6 - vp . The result is the equations 

(3.4) 

u^ • uux • \  khx - \ &L 

+ uv +   f* x  5 - y *vt * 

6-7 

6-if 

1* 

ft 
v£ 2kh 

5-7   S-%? 
- 2A(u - g-  u«), 

uh* hu - JiH_ 
^c   x 5 .^ 7x + nf 8-17 7t -°- 

with k a constant replacing the quantit7 g(l - £-). These 

equations, together with (3.3), form a 87stem of four par- 

tial differential equations for the four functions u, v? , v, 

and h. B7 analogy with gas dynamics and the nonlinear shal- 

low water theory, it is convenient to introduce a new depen- 

dent quantity c (which will turn out to be a "sound speed" 

or "propagation speed") through the relation 

(3.5) 3** \  gCl - £>*. 

The quantity c  is real  if p'   is less than p,  and this holds 
since the warm air is lighter than the cold air.     In terms 
of this new quantity the equations   (3.3)  and  (3.4)  take the 
form 

(3.6) 

c2 1   *- • uu, • 2oc_ - r*~   v7x * x Av '•Vuux *    8-*? 

v.   • uv_  * - 
w X 

4c' 
5        -tA(u-gl».) 

2c* • c\x    + 2uc    * cv 
5 -v? 

yft *uv?x »v, 
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It is now easy to write the equations (3.6) in the charac- 
teristic form simply by replacing the first and third equa- 
tions by their sum and by their difference. The result is: 

ut*(u*o)uk*2JS*(u*o)oJKj.5^[i7t*(u*o)7atj.| Ay, 

K*(u-o)u>K-8{ct*(u-c)ox}*s^^t*(uH,)^x}.J Av, 
(5.7) 

S • uv « - -±*L - 2A(u - £• u»), t * 6 -v?        P 

v?t + uv?x"?- 

As one sees, the equations ar* in characteristic form: The 
characteristic curves satisfy the differential equations 

(s»8)       dT = u * c*  dT * u " c*  dT * u' 

and each of the equations (3.7) contains only derivatives in 
the direction of one of these curves.  The characteristic 
curves defined by T| * u are taken twice. Thus one sees 
that the quantity c is indeed entitled to be called a propa- 
gation speed, and small disturbances can be expected to 
propagate with this speed in both directions relative to the 
stream of velocity u.  (In the theory by Whitham, in which 
the motion in each vertical plane y * const, is treated sep- 
arately, the propagation or sound speed of small distur- 
bances is given by vkh . The sound speed in the theory 
given here thus represents a kind of average with respect to 
y of the sound speeds of Whitham's theory.) Since the prop- 
agation speed depends on the height of the discontinuity 
surface, it is clear that the possibility of motions leading 
to breaking is inherent in this theory. 

Once the dynamical equations have been formulated in 
characteristic form it becomes possible to see rather easily 
what sort of subsidiary Initial and boundary conditions are 
reasonable.  In fact, there are many possibilities in this 
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respect.  One such possibility, for which numerical calcula- 

tions are being made, is the following. At time t = 0 it is 

assumed that u = const., V)  » o, h * const, (as in a sta- 

tionery front), but that VJt  « f(x) over a segment of the x- 
axis.  In other words, it is assumed that a transverse im- 

pulse is given to the stationary front over a portion of its 

length. The subsequent motion is uniquely determined and 

can be calculated numerically. Another possibility is to 

prescribe a stationary front at t * 0 for x > 0, say, and 

then to give the values of all dependent quantities   at 

x • 0 as arbitrary functions of the time. One might visual- 

ize this case as one in which, for example, cold air is be- 

ing either added or withdrawn at a particular point (x « 0 

in the present case). This again yields a problem with a 

uniquely determined solution, and various possibilities are 

being explored numerically. 

It was stated above that the most objectionable feature 

of the present theory is the assumption of a fixed vertical 

barrier back of the front. There is, however, a different 

way of looking at the problem as a whole which may mitigate 

this restriction somewhat.  Ons might try to consider the 

motion of the entire cap of cold air that lies over the 

polar region, using polar coordinates (0, <p)   (with © the 
latitude angle, say). One might then consider motions once 

more that depend essentially only on <p  and t by getting rid 
of the dependence on B  through use of the same type of as- 

sumptions (linear behavior in ©, say) as above. Here the 

North Pole itself would take the place of the vertical bar- 

rier (v « 01). The result would again be a system of non- 

linear equations—this time with variable coefficients. Of 

course, it would be necessary to begin with a stationary 

flow in which the motion takes place along the parallels of 

latitude. 

7—J ' ' ~—' "  
In the numerical cases so far considered we have had 
|c| < |u| so that even on the t-axis all four dependent 
quantities can be prescribed. 
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All lr. all) the ideis presented here and In the follow- 

ing papor of Whithara would eaem to yield theories flexible 

enough to permit a good det\l of freedom with regard to ini- 

tial and other conditions so that one might hope to gain 

some insight inic the complicated dynamics of frontal mo- 

tions . 
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